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Solutions d’imagerie

Solutions orthopédiques avancées
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Modélisation 3D

4
J

Planification préopératoire 3D

Chirurgie



Systeme d’imagerie biplan utilisant une technologie de balayage vertical

Imagerie biplan Balayage vertical
# Systeme composé de 2 bras verticaux #+ Un faisceau de rayons X en éventail
perpendiculaires correspondant a la hauteur du détecteur
linéaire

e Chaque bras contient un tube a rayons X et

un détecteur = Images de face et de profil acquises

Frontal

e simultanément grace au déplacement vertical
des faisceaux de rayons X en éventail et des
détecteurs

Scattered
radiation

Collimation
at detector
entrance

Lateral
detector

Collimation\

at tube exit

detector




Acquisition simultanée d’images de face et de profil
Images du corps entier ou localisées

Modélisation 3D : calcul automatique des parametres cliniques




Une dose optimisée pour des images homogenes

Flex Dose ™

Premier systeme de radiologie général
avec modulation mA

La technologie innovante Flex Dose s’appuie sur la
morphologie du patient pour moduler la dose tout au long
de 'examen, de maniere a assurer une exposition
optimale du patient aux rayonnements.

# Distribution intelligente de la dose

# Qualité d’image uniforme sur I'ensemble du corps

Jusqu’a 80 % de réduction de dose

Comparé a la méme acquisition sans Flex Dose
chez des patients dont I'IMC est inférieur a 25*

*Données internes




Images-2D/3D du corps entier en position fonctionnelle

EOS Scanner
® Acquisition simultanée d’images de face et de profil (78°) (59°)
» Images du corps entier ou localisées Q
(= —

® Modélisation 3D : calcul automatique des parametres cliniques

® Imagerie en position fonctionnelle (assis-debout)

Impact de I'imagerie en position fonctionnelle
sur les paramétres cliniques






Dimension reduction - From 3D to 2D PCA

MEANS cohort - PCA with 2 components

'MEANS cohort - PCA with 2 components
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Spine modeling

Training using PCA

G |

Parametrization Deformation modes
computed (PCA)

450 AIS patients
(3D reconstructions)

|m | <<|x| ‘E] = X+ Bm “~___Deformation modes vector
(shape descriptors in the
reduced latent space)

—3\/1_1- <m; <3 \/A_l (with 4; the eigenvalue
corresponding to the it" eigenvector)

Shape instance Deformation
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Spine modeling

12

Inference from sparse data (model fit)

For dataset X € R"Xd and coordinate i:
|m|

m = argmmzwl(xm— ) +ﬁ ka
=1 / I
Target observed L2 Regularization
landmarks

B being the latent representation vectors and m the latent
representation

f : regularization weight
Least squares solution (weights w; = 1):

(BgBo + ﬂzl)_lBg(xo - Eo)

~
L

Trade off between
"ﬂ_..--—-_"-". . .
i model fitting and
—— reconstruction error

[=)]

w
L

average 3D distance
W os

—e— not clipped: distance to true spines (Ansart et al 2022

=+=- not clipped: distance to noisy spines
—e— clipped: distance to true spines
-~ clipped: distance to noisy spines
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Spinal anatomy and sagittal balance :

AR cervical ( Lordosls )

Pl=PT +SS

- ";E Thoracic { Kyphosis )
.‘: I
LT !
- |
r/ 1
Lumbar { Lordoesis ) . ,: E / \\.\ | g
K ¥ e
S A Y R . 7 S | +
ey :
»' Sacral { Kyphosis ; Pelvic parameters: PT pelvic tilt, SS sacral slope, Pl pelvic incidence " ;
\ Coceyx ( Tailbone )
O |
24 vertebrae (7 cervical — Pelvic incidence: fixed anatomical Cone of economy: position
12 thoracic — 5 lumbar) parameter that minimizes efforts while
_ _ maintaining a horizontal gaze
Spongious intervertebral When PT 1, SS ¢
discs : L :
Pelvic geometry = high impact on spinal
Kyphotic and lordotic shape €OS
normal curves to keep . :
13 Imaging
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-a— Normal Disc

&
-a— Degenerative Disc oS

. —=— Bulging Disc

-a— Herniated Disc

<« Thinning Disc

5 - Disc Degeneration with
' Osteophyte formation

With age: degenerative process

Loss of disc height = Compensatory mechanisms chain UNTIL
Lumbar lordosis loss + thoracic kyphosis increasing | > UNBALANCE €OS
» To avoid leaning forward and keep & horizontal gaze > pelvic need for su rgery I imaging

retroversion, cervical lordosis extension and knee flexion an OARC coneant



10 Top KOLS in adult spine Columbia (New York) Bordeaux Kameda (Niigata)
Nord

6 sites / 5 different countries (NAM, APAC,
EMEA)

488 EOS 3D reconstructions with new sterEOS 2
full-body parameters

+10 manuscripts / + 20 posters presentations \
; 1 Kassab Institute (Tunis)\

Washington University (Saint Louis) NUHS (Singapore)

What is a “NORMAL” alighment ?
® Cluster analysis to try identifying patterns and potential evolution with age
® Defining personalized sagittal shape “targets” for surgery based on pelvic morphology
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Unsupervised
data clustering
Machine learning
tools to enhance
data density

From 3D models to clustered sagittal shapes...
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Machine learning tool based on topological structure of
the data

Takes as input the number of k neighbors
to consider

Creates links with the points embedded in
the circle created associated to a weight

Projects the data into lower number of
dimension while keeping the same
structure for data linked

UMAP allows to “enhance” data density by gluing similar data points



Hierarchical Density based clustering algorithm

A Builds a simplified\

hierarchical tree
based on mutual
reachability distance
= density

> A value = cutoff
value that divide
the tree into
clusters

> Finds the A value
that maximize the
conservation of the
clusters

> Allows outliers
detection and
nonconvex clusters

\detection /
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Example data clustered in 2D using UMAP + HDBSCAN
and displayed using PCA and UMAP

UMAP projection

PCA projection
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> UMAP helps defining clear clusters, even in 2D

€O

imaging

T
40

T
60




Results |, increasing order of median age

1.0 1 1.0 A 1.0 1 1.0 1

0.5 1 0.5 1 0.5 0.5 1

0.0 | 0.0 4 0.0 0.0 A

0.2 -0.2 0.0 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2

N2 =28 N3=33 N4 =104 N5 =37 N6 =99 N7 =23 N8 =19

Sagittal shapes (expressed in patient plane) superposed within each cluster
——— Mean sagittal shape within each cluster
€OS ——— Mean OD plumb line
HENETS . Hip axis (set at the origin)

N =456
N outliers =91




Compensatory mechanisms with age —

In literature:

> Increase of PT

> Loss of lordosis

> Increase of cervical and O-C2 CL to maintain horizontal gaze
> Knee flexion

From MEANS abstracts:
> Increase of TK
>Head maintained over the knees more than the HA
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Clinical parameters —
compensatory mechanisms

group_6 group_7 group_4 group_0
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Sagittal « targets » for spine surgery based on pelvic morphology

= .
All shapes 3 first principal modes of
superimposed for _ variation
model creation X=X + Bm *~___Deformation modes vector | _
(shape descriptors in the SSM inferences computation

Shape instance Deformation reduced latent space) based on pelvic constraints

+ error corridor
—3./A; <m; < 3.,/A; (with 4; the eigenvalue
corresponding to the it eigenvector)

LITO

24



Sagittal « targets » for spine surgery based on pelvic morphology

Proximal Junctional Kyphosis
(PJK) — Construct too short ?

25



PhD

These supervisée par Irene Buvat & Frederique Frouin:

 Programme Al.DReAM (GE Healthcare): consortium sites cliniques/centres de
recherche/PME/start-ups — acceélérer developpement IA en imagerie médicale

 Développement de méthodes pour I’évaluation & prédiction de
la robustesse d’algorithmes d’lA en imagerie meédicale

Thématiques : Imagerie médicale (IRM, TEP), apprentissage machine, Python, méethodes
generigues, robustesse/fiabilité

LITO
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How to predict model performance given new data instance(s) ?

1- A- Features extraction from raw images (+ segmentation if available) :
= Classic radiomic feature extraction
= Deep radiomic: autoencoder (pre trained ?, embedding of evaluated model if

available ?)
B- Evaluation of features having an impact on prediction using test set results

C- Calculation of the probability that the new instance belongs to same distribution
as that of the train set using identified key features

2- Using predictions from the models corresponding to the different folds in a CV
scheme to compute agreement between predictions

3- Using 1-C & 2 results to compute a confidence index in the new instance model
prediction

LITO 27



How to predict model performance given new data instance(s) ?

=T @@ -
@ =58 — BE

. , variance/agreement
instance(s) New instance(s) computation between
predictions (X-folds from

g X-val results
_— cross validation)
@ 1 @ o

Trained model to

v

Test set be evaluated .
Confidence
index
o computation
e®®
L)
) °
\Tram set /
N Predictive features
T | identification
est set =

u

3

H—H m)| New 3

instance(s) 2
||

_ Train set > 5 B 4 0o
Features extraction \ ) ”"Componentz i -z.s'\g‘é"“
(Clasrzlo(l:i?)ln?irc(;eep Embedded Dimension reduction for data viz if Out of distribution detection
features needed (t-SNE, UMAP)
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Neotex dataset

Breast tumor MRI sequences (baseline scans and post NAC scans)

1- CNN training using GT
manual segmentation

2- 5-folds cross validation
using different sequences

3- Model trained and tested on
various set of data (baseline /
baseline + post NAC, ...)

T1-MRI + Manually segmented GT - LifeX

LITO 29



Shape features analysis

Is tumors shape enough to predict a segmentation score ?

Radiomics features score computation using pyradiomics:
- 14 features, high correlations.
- Features kept for 1st evaluation:

o Mesh volume

o Elongation

o Sphericity

o Surface volume ratio

LITO




Predictive power of shape features

Logistic reg for CNN dice >= 0.7 pred using only shape features: Mesh
volume (baseline test cases + post NAC test cases)

ROC Curve for Feature Volume tumor

od — Feature Volume tumor (AUC = 0.85)

Accuracy= 0.79
AUC = 0.85

LITO

True label

Confusion Matrix

Predicted label
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Predictive power of shape features

Logistic reg for CNN dice >= 0.7 pred using only shape features:
Elongation (baseline test cases + post NAC test cases)

ROC Curve for Feature Tumor Elongation
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s
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’
#
s
’
#
’
’
s
-

Confusion Matrix

Elongation (AUC = 0.65)

- Random

True label

T —-0
0 1
Predicted label

Accuracy= 0.5
AUC = 0.65

--> no better than random classification

LITO




Predictive power of shape features

Logistic reg for CNN dice >= 0.7 pred using only shape features:
Sphericity (baseline test cases + post NAC test cases)

ROC Curve for Feature Tumor Sphericity Confusion Matrix

1.0 1
—=- Random

True label

T
0 1
Predicted lahel

Accuracy= 0.54
AUC =0.52
--> no better than random classification

LITO




Predictive power of shape features

Logistic reg for CNN dice >= 0.7 pred using only shape features:
Surface Volume ratio (baseline test cases + post NAC test cases)

ROC Curve for Feature Tumor Surface Volume Ratio

Confusion Matrix
0 8
IR
2 —
W i8]
= s
e i)
& [it]
E =
g o =
10
1 0
F5
—_— lume Ratio (AUC = 0.86)
==- Random
. Lo
0 1

Predicted label

Accuracy= 0.69
AUC = 0.86
Specificity = 0.6
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Predictive power of shape features

Logistic reg for CNN dice >= 0.7 pred using only shape features:
Volume + Surface volume ratio

ROC Curve for Feature Mesh Volume + Tumor Sphericity

Confusion Matrix

22.5

20.0

17.5

15.0

- 12.5

True label

- 10.0

7.5

r 5.0

2.5

Predicted label

Accuracy= 0.81
AUC = 0.86 Specificity=0.92
--> more complex shapes + small tumors = worst performances
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Predictive power of shape features
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e @ Test points
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Prediction results vs Data instance similarity w/ train set
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